Unification-based Constraints for Statistical Machine Translation

نویسنده

  • Philip Williams
چکیده

Morphology and syntax have both received attention in statistical machine translation research, but they are usually treated independently and the historical emphasis on translation into English has meant that many morphosyntactic issues remain underresearched. Languages with richer morphologies pose additional problems and conventional approaches tend to perform poorly when either source or target language has rich morphology. In both computational and theoretical linguistics, feature structures together with the associated operation of unification have proven a powerful tool for modelling many morphosyntactic aspects of natural language. In this thesis, we propose a framework that extends a state-of-the-art syntax-based model with a feature structure lexicon and unification-based constraints on the target-side of the synchronous grammar. Whilst our framework is language-independent, we focus on problems in the translation of English to German, a language pair that has a high degree of syntactic reordering and rich target-side morphology. We first apply our approach to modelling agreement and case government phenomena. We use the lexicon to link surface form words with grammatical feature values, such as case, gender, and number, and we use constraints to enforce feature value identity for the words in agreement and government relations. We demonstrate improvements in translation quality of up to 0.5 BLEU over a strong baseline model. We then examine verbal complex production, another aspect of translation that requires the coordination of linguistic features over multiple words, often with longrange discontinuities. We develop a feature structure representation of verbal complex types, using constraint failure as an indicator of translation error and use this to automatically identify and quantify errors that occur in our baseline system. A manual analysis and classification of errors informs an extended version of the model that incorporates information derived from a parse of the source. We identify clause spans and use model features to encourage the generation of complete verbal complex types. We are able to improve accuracy as measured using precision and recall against values extracted from the reference test sets. Our framework allows for the incorporation of rich linguistic information and we present sketches of further applications that could be explored in future work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Agreement Constraints for Statistical Machine Translation into German

Languages with rich inflectional morphology pose a difficult challenge for statistical machine translation. To address the problem of morphologically inconsistent output, we add unification-based constraints to the target-side of a string-to-tree model. By integrating constraint evaluation into the decoding process, implausible hypotheses can be penalised or filtered out during search. We use a...

متن کامل

Learning Transfer Rules for Machine Translation with Limited Data

The transfer-based approach to machine translation (MT) captures structural transfers between the source language and the target language, with the goal of producing grammatical translations. The major drawback of the approach is the development bottleneck, requiring many human-years of rule development. On the other hand, data-driven approaches such as example-based and statistical MT achieve ...

متن کامل

A new model for persian multi-part words edition based on statistical machine translation

Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...

متن کامل

Towards Statistical Machine Translation with Unification Grammars

Traditional Statistical Machine Translation (SMT) models account poorly for many linguistic phenomena, such as subject-verb agreement and differences in word-order between languages. Recent work, such as that in factored phrase-based models, has shown promising improvements in translation quality through the use of linguistically-richer models. Unification-based approaches to grammar offer a fr...

متن کامل

Novel Reordering Approaches in Phrase-Based Statistical Machine Translation

This paper presents novel approaches to reordering in phrase-based statistical machine translation. We perform consistent reordering of source sentences in training and estimate a statistical translation model. Using this model, we follow a phrase-based monotonic machine translation approach, for which we develop an efficient and flexible reordering framework that allows to easily introduce dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014